Covering a number of important subjects in quantum optics, this textbook is an excellent introduction for advanced undergraduate and beginning graduate students, familiarizing readers with the basic concepts and formalism as well as the most recent advances.

The first part of the textbook covers the semi-classical approach where matter is quantized, but light is not. It describes significant phenomena in quantum optics, including the principles of lasers. The second part is devoted to the full quantum description of light and its interaction with matter, covering topics such as spontaneous emission, and classical and non-classical states of light. An overview of photon entanglement and applications to quantum information is also given. In the third part, nonlinear optics and laser cooling of atoms are presented, where the use of both approaches allows for a comprehensive description. Each chapter describes basic concepts in detail, and more specific concepts and phenomena are presented in ‘complements’.

Gilbert Grynberg was a CNRS Senior Scientist at the Laboratoire Kastler Brossel at the Université Pierre et Marie Curie Paris 6, and a Professor at the Ecole Polytechnique. He was a pioneer in many domains, including atomic spectroscopy, nonlinear optics and laser-cooled atoms in optical lattices.

Alain Aspect is a CNRS Senior Scientist and Professor at the Institut d’Optique and the Ecole Polytechnique. A pioneer of the field of quantum entanglement, his research covers quantum optics, laser cooling of atoms, atom optics, Bose–Einstein condensates, atom lasers and quantum atom optics. He was awarded the 2010 Wolf Prize in Physics.

Claude Fabre is a Professor in the Laboratoire Kastler Brossel at the Université Pierre et Marie Curie Paris 6, and a senior member of the Institut Universitaire de France. His fields of research are quantum optics, atomic and laser physics, both experimentally and theoretically.
Introduction to Quantum Optics
From the Semi-classical Approach to Quantized Light

GILBERT GRYNBERG
Ecole Normale Supérieure, Paris
Ecole Polytechnique

ALAIN ASPECT
Institut d’Optique and Ecole Polytechnique,
Palaisean

CLAUDE FABRE
Université Pierre et Marie Curie and Ecole Normale Supérieure, Paris

With a Foreword by Claude Cohen-Tannoudji
Contents

Table of contents (short)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>xxiii</td>
</tr>
<tr>
<td>Preface</td>
<td>xxv</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xxviii</td>
</tr>
</tbody>
</table>

Part I Semi-classical description of matter–light interaction

1 **The evolution of interacting quantum systems**

 1.1 Review of some elementary results of quantum mechanics 4
 1.2 Transition between discrete levels induced by a time-dependent perturbation 5
 1.3 Case of a discrete level coupled to a continuum: Fermi’s golden rule 19
 1.4 Conclusion 32

 Complement 1A A continuum of variable width 34
 Complement 1B Transition induced by a random broadband perturbation 38

2 **The semi-classical approach: atoms interacting with a classical electromagnetic field**

 2.1 Atom–light interaction processes 46
 2.2 The interaction Hamiltonian 53
 2.3 Transitions between atomic levels driven by an oscillating electromagnetic field 64
 2.4 Absorption between levels of finite lifetimes 80
 2.5 Laser amplification 92
 2.6 Rate equations 96
 2.7 Conclusion 104

 Complement 2A Classical model of the atom-field interaction: the Lorentz model 105
 Complement 2B Selection rules for electric dipole transitions.
 Applications to resonance fluorescence and optical pumping 120
 Complement 2C The density matrix and the optical Bloch equations 140
 Complement 2D Manipulation of atomic coherences 167
 Complement 2E The photoelectric effect 179
3 Principles of lasers

3.1 Conditions for oscillation 193
3.2 Description of the amplifying media of some lasers 199
3.3 Spectral properties of lasers 215
3.4 Pulsed lasers 221
3.5 Conclusion: lasers versus classical sources 227

Complement 3A The resonant Fabry–Perot cavity 230
Complement 3B The transverse modes of a laser: Gaussian beams 239
Complement 3C Laser light and incoherent light: energy density and number of photons per mode 247
Complement 3D The spectral width of a laser: the Schawlow–Townes limit 257
Complement 3E The laser as energy source 261
Complement 3F The laser as source of coherent light 271
Complement 3G Nonlinear spectroscopy 283

Part II Quantum description of light and its interaction with matter 299

4 Quantization of free radiation

4.1 Classical Hamiltonian formalism and canonical quantization 302
4.2 Free electromagnetic field and transversality 305
4.3 Expansion of the free electromagnetic field in normal modes 310
4.4 Hamiltonian for free radiation 315
4.5 Quantization of radiation 317
4.6 Quantized radiation states and photons 319
4.7 Conclusion 324

Complement 4A Example of the classical Hamiltonian formalism: charged particle in an electromagnetic field 325
Complement 4B Momentum and angular momentum of radiation 327
Complement 4C Photons in modes other than travelling plane waves 334

5 Free quantum radiation

5.1 Photodetectors and semi-reflecting mirrors. Homodyne detection of the quadrature components 342
5.2 The vacuum: ground state of quantum radiation 350
5.3 Single-mode radiation 353
5.4 Multimode quantum radiation 371
5.5 One-photon interference and wave–particle duality. An application of the formalism 377
5.6 A wave function for the photon? 383
5.7 Conclusion 385

Complement 5A Squeezed states of light: the reduction of quantum fluctuations 387
Complement 5B	One-photon wave packet	398
Complement 5C	Polarization-entangled photons and violation of Bell’s inequalities	413
Complement 5D	Entangled two-mode states	434
Complement 5E	Quantum information	443
6	Interaction of an atom with the quantized electromagnetic field	457
6.1	Classical electrodynamics and interacting fields and charges	458
6.2	Interacting fields and charges and quantum description in the Coulomb gauge	467
6.3	Interaction processes	471
6.4	Spontaneous emission	477
6.5	Photon scattering by an atom	485
6.6	Conclusion. From the semi-classical to the quantum treatment of atom–light interaction	495
Complement 6A	Hamiltonian formalism for interacting fields and charges	498
Complement 6B	Cavity quantum electrodynamics	502
Complement 6C	Polarization-entangled photon pairs emitted in an atomic radiative cascade	518
Part III	Applying both approaches	527
7	Nonlinear optics. From the semi-classical approach to quantum effects	529
7.1	Introduction	529
7.2	Electromagnetic field in a nonlinear medium. Semi-classical treatment	530
7.3	Three-wave mixing. Semi-classical treatment	535
7.4	Quantum treatment of parametric fluorescence	545
7.5	Conclusion	559
Complement 7A	Parametric amplification and oscillation. Semi-classical and quantum properties	560
Complement 7B	Nonlinear optics in optical Kerr media	577
8	Laser manipulation of atoms. From incoherent atom optics to atom lasers	599
8.1	Energy and momentum exchanges in the atom–light interaction	600
8.2	Radiative forces	604
8.3	Laser cooling and trapping of atoms, optical molasses	618
8.4	Gaseous Bose–Einstein condensates and atom lasers	633
Complement 8A	Cooling to sub-recoil temperatures by velocity-selective coherent population trapping	651

Index | 661 |
Part I Semi-classical description of matter–light interaction

1 The evolution of interacting quantum systems
 1.1 Review of some elementary results of quantum mechanics 4
 1.2 Transition between discrete levels induced by a time-dependent perturbation 5
 1.2.1 Presentation of the problem 5
 1.2.2 Examples 5
 1.2.3 Perturbation series expansion of the system wavefunction 7
 1.2.4 First-order theory 8
 1.2.5 Second-order calculations 14
 1.2.6 Comparison with the exact solution for a two-level system 17
 1.3 Case of a discrete level coupled to a continuum: Fermi’s golden rule 19
 1.3.1 Example: autoionization of helium 20
 1.3.2 Discrete level coupled to a quasi-continuum: simplified model 22
 1.3.3 Fermi’s golden rule 28
 1.3.4 Case of a sinusoidal perturbation 31
 1.4 Conclusion 32

Complement 1A A continuum of variable width
 1A.1 Description of the model 34
 1A.2 Temporal evolution 34

Complement 1B Transition induced by a random broadband perturbation
 1B.1 Description of a random perturbation 38
 1B.1.1 Definitions 38
 1B.1.2 Example 40
 1B.2 Transition probability between discrete levels 41
 1B.2.1 General expression 41
 1B.2.2 Behaviour at intermediate times 42
 1B.2.3 Behaviour at long times 42
 1B.3 Transition probability between a discrete level and a continuum 43
2 The semi-classical approach: atoms interacting with a classical electromagnetic field

2.1 Atom–light interaction processes
 2.1.1 Absorption
 2.1.2 Stimulated emission
 2.1.3 Spontaneous emission
 2.1.4 Elastic scattering
 2.1.5 Nonlinear processes

2.2 The interaction Hamiltonian
 2.2.1 Classical electrodynamics: the Maxwell–Lorentz equations
 2.2.2 Hamiltonian of a particle in a classical electromagnetic field
 2.2.3 Interaction Hamiltonian in the Coulomb gauge
 2.2.4 Electric dipole Hamiltonian
 2.2.5 The magnetic dipole Hamiltonian

2.3 Transitions between atomic levels driven by an oscillating electromagnetic field
 2.3.1 The transition probability in first-order perturbation theory
 2.3.2 Rabi oscillations between two levels
 2.3.3 Multiphoton transitions
 2.3.4 Light-shifts

2.4 Absorption between levels of finite lifetimes
 2.4.1 Presentation of the model
 2.4.2 Excited state population
 2.4.3 Dielectric susceptibility
 2.4.4 Propagation of an electromagnetic wave: absorption and dispersion
 2.4.5 Case of a closed two-level system

2.5 Laser amplification
 2.5.1 Feeding the upper level: stimulated emission
 2.5.2 Amplified propagation: laser action
 2.5.3 Generalization: pumping of both levels and saturation
 2.5.4 Laser gain and population inversion

2.6 Rate equations
 2.6.1 Conservation of energy in the propagation
 2.6.2 Rate equations for the atoms
 2.6.3 Atom–photon interactions. Cross-section, saturation intensity
 2.6.4 Rate equations for the photons. Laser gain

2.7 Conclusion

Complement 2A Classical model of the atom-field interaction: the Lorentz model

2A.1 Description of the model
2A.2 Electric dipole radiation
2A.3 Radiative damping of the elastically bound electron
2A.4 Response to an external electromagnetic wave
2A.5 Relationship between the classical atomic model and the quantum mechanical two-level atom 118

Complement 2B Selection rules for electric dipole transitions. Applications to resonance fluorescence and optical pumping 120

2B.1 Selection rules and the polarization of light 120
 2B.1.1 Forbidden electric dipole transitions 120
 2B.1.2 Linearly polarized light 121
 2B.1.3 Circularly polarized light 124
 2B.1.4 Spontaneous emission 127

2B.2 Resonance fluorescence 129
 2B.2.1 Principle 129
 2B.2.2 Measurement of population transfers in the excited state 130

2B.3 Optical pumping 133
 2B.3.1 $J = 1/2 \rightarrow J = 1/2$ transition excited by circularly polarized light 133
 2B.3.2 Rate equations for optical pumping 136

Complement 2C The density matrix and the optical Bloch equations 140

2C.1 Wavefunctions and density matrices 141
 2C.1.1 Isolated and coupled systems 141
 2C.1.2 The density matrix representation 141
 2C.1.3 Two-level systems 143

2C.2 Perturbative treatment 147
 2C.2.1 Iterative solution for the evolution of the density matrix 147
 2C.2.2 Atom interacting with an oscillating field: regime of linear response 149

2C.3 Optical Bloch equations for a two-level atom 152
 2C.3.1 Introduction 152
 2C.3.2 Closed systems 153
 2C.3.3 Open systems 155

2C.4 The Bloch vector 157
 2C.4.1 Definition 157
 2C.4.2 Effect of a monochromatic field 159
 2C.4.3 Effect of relaxation 160
 2C.4.4 Rapid adiabatic passage 161

2C.5 From the Bloch equations to the rate equations 162
 2C.5.1 Case of fast relaxation of coherences 162
 2C.5.2 Case of an optical field of finite coherence time 163

2C.6 Conclusion 165

Complement 2D Manipulation of atomic coherences 167

2D.1 Direct manipulation of a two-level system 167
 2D.1.1 Generalities 167
 2D.1.2 Ramsey fringes 168
 2D.1.3 Photon echoes 170
Contents

2D.2 Use of a third level
 2D.2.1 Coherent population trapping 172
 2D.2.2 Electromagnetically induced transparency 176

Complement 2E The photoelectric effect 179

2E.1 Description of the model
 2E.1.1 The bound atomic state 180
 2E.1.2 Unbound states: the density of states 181
 2E.1.3 The interaction Hamiltonian 183

2E.2 The photoionization rate and cross-section 185
 2E.2.1 Ionization rate 185
 2E.2.2 The photoionization cross-section 187
 2E.2.3 Long-time behaviour 187

2E.3 Application to the photoionization of hydrogen 188

3 Principles of lasers 191

3.1 Conditions for oscillation
 3.1.1 Lasing threshold 193
 3.1.2 The steady state: intensity and frequency of the laser output 195

3.2 Description of the amplifying media of some lasers
 3.2.1 The need for population inversion 199
 3.2.2 Four-level systems 201
 3.2.3 Laser transition ending on the ground state: the three-level scheme 210

3.3 Spectral properties of lasers
 3.3.1 Longitudinal modes 215
 3.3.2 Single longitudinal mode operation 217
 3.3.3 Spectral width of the laser output 219

3.4 Pulsed lasers
 3.4.1 Mode-locked lasers 221
 3.4.2 Q-switched lasers 226

3.5 Conclusion: lasers versus classical sources
 3.5.1 Classical light sources: a few orders of magnitude 227
 3.5.2 Laser light 228

Further reading 229

Complement 3A The resonant Fabry–Perot cavity 230

3A.1 The linear Fabry–Perot cavity 230
3A.2 Cavity transmission and reflection coefficients and resonances 232
3A.3 Ring Fabry–Perot cavity with a single coupling mirror 234
3A.4 The cavity finesse 235
3A.5 Cavity with a large finesse 236
3A.6 Linear laser cavity 238
Contents

Complement 3B The transverse modes of a laser: Gaussian beams 239

3B.1 Fundamental Gaussian beam 239
3B.2 The fundamental transverse mode of a stable cavity 241
3B.3 Higher-order Gaussian beams 242
3B.4 Longitudinal and transverse modes of a laser 245

Complement 3C Laser light and incoherent light: energy density and number of photons per mode 247

3C.1 Conservation of radiance for an incoherent source 247
 3C.1.1 Étendue and radiance 247
 3C.1.2 Conservation of radiance 249
3C.2 Maximal irradiance by an incoherent source 250
3C.3 Maximal irradiance by laser light 251
3C.4 Photon number per mode 252
 3C.4.1 Thermal radiation in a cavity 252
 3C.4.2 Laser cavity 253
3C.5 Number of photons per mode for a free beam 253
 3C.5.1 Free propagative mode 253
 3C.5.2 Pencil of heat radiation 255
 3C.5.3 Beam emitted by a laser 255
3C.6 Conclusion 256

Complement 3D The spectral width of a laser: the Schawlow–Townes limit 257

Complement 3E The laser as energy source 261

3E.1 Laser irradiation of matter 261
 3E.1.1 The light–matter coupling 262
 3E.1.2 Energy transfer 263
 3E.1.3 Mechanical effects 264
 3E.1.4 Photo-chemical effects and photo-ablation 264
3E.2 Machining and materials processing using lasers 265
 3E.2.1 Thermal effects 265
 3E.2.2 Transfer of material 266
3E.3 Medical applications 266
3E.4 Inertial fusion 268

Complement 3F The laser as source of coherent light 271

3F.1 The advantages of laser light sources 271
 3F.1.1 Geometrical properties 271
 3F.1.2 Spectral and temporal properties 272
 3F.1.3 The manipulation of laser beams 273
3F.2 Laser measurement of distances 273
3F.3 Remote sensing using lasers: the LIDAR 275
 3F.3.1 Atmospheric LIDAR 275
Contents

3F.3.2 Coherent LIDAR 276
3F.3.3 Measurement of angular velocities 276
3F.4 Optical telecommunications 279
3F.5 Laser light and other information technologies 280

Complement 3G Nonlinear spectroscopy 283
3G.1 Homogeneous and inhomogeneous broadening 283
3G.2 Saturated absorption spectroscopy 284
 3G.2.1 Holes in a population distribution 285
 3G.2.2 Saturated absorption in a gas 286
3G.3 Doppler-free two-photon spectroscopy 290
 3G.3.1 Two-photon transitions 290
 3G.3.2 Elimination of Doppler broadening 291
 3G.3.3 Properties of Doppler-free two-photon spectroscopy 293
3G.4 The spectroscopy of the hydrogen atom 294
 3G.4.1 A short history of hydrogen atom spectroscopy 294
 3G.4.2 The hydrogen atom spectrum 295
 3G.4.3 Determination of the Rydberg constant 296

Part II Quantum description of light and its interaction with matter 299

4 Quantization of free radiation 301
 4.1 Classical Hamiltonian formalism and canonical quantization 302
 4.1.1 Quantizing a system of material particles 302
 4.1.2 Classical Hamiltonian formulation: Hamilton’s equations 303
 4.1.3 Canonical quantization 304
 4.1.4 Hamiltonian formalism for radiation: stating the problem 304
 4.2 Free electromagnetic field and transversality 305
 4.2.1 Maxwell’s equations in vacuum 305
 4.2.2 Spatial Fourier expansion 305
 4.2.3 Transversality of the free electromagnetic field and polarized Fourier components 307
 4.2.4 Vector potential in the Coulomb gauge 309
 4.3 Expansion of the free electromagnetic field in normal modes 310
 4.3.1 Dynamical equations of the polarized Fourier components 310
 4.3.2 Normal variables 311
 4.3.3 Expansion of the free field in normal modes 312
 4.3.4 Analytic signal 314
 4.3.5 Other normal modes 314
 4.4 Hamiltonian for free radiation 315
 4.4.1 Radiation energy 315
 4.4.2 Conjugate canonical variables for a radiation mode 316
 4.5 Quantization of radiation 317
 4.5.1 Canonical commutation relations 317
5.3.3 Single-mode number state 358
5.3.4 Quasi-classical states $|\alpha|_\ell$ 360
5.3.5 Other quantum states of single-mode radiation: squeezed states and Schrödinger cats 365
5.3.6 The limit of small quantum fluctuations and the photon number–phase Heisenberg relation 366
5.3.7 Light beam propagating in free space 368
5.4 Multimode quantum radiation 371
5.4.1 Non-factorizable states and entanglement 371
5.4.2 Multimode quasi-classical state 373
5.4.3 One-photon multimode state 375
5.5 One-photon interference and wave–particle duality. An application of the formalism 377
5.5.1 Mach–Zehnder interferometer in quantum optics 377
5.5.2 Quasi-classical incoming radiation 379
5.5.3 Particle-like incoming state 380
5.5.4 Wave–particle duality for a particle-like state 381
5.5.5 Wheeler’s delayed-choice experiment 382
5.6 A wave function for the photon? 383
5.7 Conclusion 385

Complement 5A Squeezed states of light: the reduction of quantum fluctuations 387
5A.1 Squeezed states: definition and properties 387
5A.1.1 Definition 387
5A.1.2 Expectation values of field observables for a squeezed state 388
5A.1.3 The squeezing operator 391
5A.1.4 Transmission of a squeezed state by a beamsplitter 392
5A.1.5 Effect of losses 393
5A.2 Generation of squeezed light 394
5A.2.1 Generation by parametric processes 394
5A.2.2 Other methods 395
5A.3 Applications of squeezed states 396
5A.3.1 Measurement of small absorption coefficients 396
5A.3.2 Interferometric measurements 397

Complement 5B One-photon wave packet 398
5B.1 One-photon wave packet 398
5B.1.1 Definition and single photodetection probability 398
5B.1.2 One-dimensional wave packet 399
5B.1.3 Spontaneous emission photon 401
5B.2 Absence of double detection and difference with a classical field 403
5B.2.1 Semi-reflecting mirror 403
5B.2.2 Double detection with a classical wave packet 405
5B.3 Two one-photon wave packets on a semi-reflecting mirror 408
 5B.3.1 Single detections 408
 5B.3.2 Joint detections 409
5B.4 Quasi-classical wave packet 411

Complement 5C Polarization-entangled photons and violation of Bell's inequalities 413

5C.1 From the Bohr–Einstein debate to the Bell inequalities and quantum information: a brief history of entanglement 413
5C.2 Photons with correlated polarization: EPR pairs 415
 5C.2.1 Measuring the polarization of a single photon 415
 5C.2.2 Photon pairs and joint polarization measurements 417
 5C.2.3 EPR pairs with correlated polarizations 419
 5C.2.4 The search for a picture to interpret the correlations between widely separated measurements 421
5C.3 Bell’s theorem 425
 5C.3.1 Bell inequalities 425
 5C.3.2 Conflict with quantum mechanics 426
 5C.3.3 Locality condition and relativistic causality. Experiment with variable polarizers 428
5C.4 The experimental verdict and violation of the Bell inequalities 429
5C.5 Conclusion: from quantum nonlocality to quantum information 432

Complement 5D Entangled two-mode states 434

5D.1 General description of a two-mode state 434
 5D.1.1 General considerations 434
 5D.1.2 Schmidt decomposition 435
 5D.1.3 Correlations between measurements carried out on the two modes 436
5D.2 Twin photon states 437
 5D.2.1 Definition and properties 437
 5D.2.2 Production 438
5D.3 Relation between squeezing and entanglement 439
 5D.3.1 General considerations 439
 5D.3.2 Mixing two squeezed states on a semi-reflecting mirror 439
 5D.3.3 Non-destructive measurement of two complementary variables: the ‘EPR paradox’ 441

Complement 5E Quantum information 443

5E.1 Quantum cryptography 443
 5E.1.1 From classical to quantum cryptography 443
 5E.1.2 Quantum cryptography with entangled photons 444
 5E.1.3 From theory to practice 446
 5E.1.4 The no-cloning theorem 447
5E.1.5 And if there were no entangled states? The BB84 protocol 448
5E.1.6 Experimental results 449
5E.2 Quantum computing 449
5E.2.1 Quantum bits or ‘qubits’ 449
5E.2.2 The Shor factorization algorithm 450
5E.2.3 Working principle of a quantum computer 451
5E.2.4 Practical matters 453
5E.3 Quantum teleportation 454
5E.4 Conclusion 456
6 Interaction of an atom with the quantized electromagnetic field 457
6.1 Classical electrodynamics and interacting fields and charges 458
6.1.1 The Maxwell–Lorentz equations 458
6.1.2 Decomposition of the electromagnetic field into transverse and longitudinal components. Radiation 460
6.1.3 Polarized Fourier components of the radiation and the vector potential in the Coulomb gauge 462
6.1.4 Normal variables for radiation and expansion in polarized, travelling plane waves 462
6.1.5 Generalized particle momentum. Radiation momentum 463
6.1.6 Hamiltonian in the Coulomb gauge 464
6.2 Interacting fields and charges and quantum description in the Coulomb gauge 467
6.2.1 Canonical quantization 467
6.2.2 Hamiltonian and state space 468
6.2.3 Interaction Hamiltonian 469
6.3 Interaction processes 471
6.3.1 The Hamiltonian \hat{H}_{11} 471
6.3.2 Absorption 471
6.3.3 Emission 473
6.3.4 Rabi oscillation 474
6.3.5 The Hamiltonian \hat{H}_{12} and elastic scattering 475
6.4 Spontaneous emission 477
6.4.1 Principle of the calculation 477
6.4.2 Quasi-continuum of one-photon states and density of states 479
6.4.3 Spontaneous emission rate in a given direction 481
6.4.4 Lifetime of the excited state and natural width 482
6.4.5 Spontaneous emission: a joint property of the atom and the vacuum 484
6.5 Photon scattering by an atom 485
6.5.1 Scattering matrix elements 485
6.5.2 Scattering cross-section 487
6.5.3 Qualitative description of some scattering processes 488
6.5.4 Thomson scattering cross-section 493
6.6 Conclusion. From the semi-classical to the quantum treatment of atom–light interaction

Complement 6A Hamiltonian formalism for interacting fields and charges

6A.1 Hamiltonian formalism and canonical quantization
6A.2 Hamilton’s equations for particles and radiation
 6A.2.1 Classical Hamiltonian for the charge–field system
 6A.2.2 Hamilton’s equations for the charges
 6A.2.3 Hamilton’s equations for the radiation
 6A.2.4 Conclusion

Complement 6B Cavity quantum electrodynamics

6B.1 Presentation of the problem
6B.2 Eigenmodes of the coupled atom–cavity system
 6B.2.1 Jaynes–Cummings model
 6B.2.2 Diagonalization of the Hamiltonian
 6B.2.3 Spontaneous emission of an excited atom placed in the empty cavity
6B.3 Evolution in the presence of an intracavity field
 6B.3.1 Field initially in a number state
 6B.3.2 Field initially in an ‘intense’ quasi-classical state: semi-classical limit
 6B.3.3 Field initially in a quasi-classical state with a small number of photons
6B.4 Effect of cavity losses: the Purcell effect
6B.5 Conclusion

Complement 6C Polarization-entangled photon pairs emitted in an atomic radiative cascade

6C.1 Introduction. Entangled photon pairs for real experiments
6C.2 Photon pair emitted in an atomic radiative cascade $J = 0 \rightarrow J = 1 \rightarrow J = 0$. Elementary process
 6C.2.1 Description of the system
 6C.2.2 Emission of photon ν_1 and entangled atom–radiation state
 6C.2.3 Emission of photon ν_2 and elementary EPR pair
6C.3 Generalization and sum over frequencies
6C.4 Two-photon excitations

Part III Applying both approaches

7 Nonlinear optics. From the semi-classical approach to quantum effects

7.1 Introduction
7.2 Electromagnetic field in a nonlinear medium. Semi-classical treatment
 7.2.1 Linear susceptibility